ICRLP Webinar Explainer Series Provides A Deeper Understanding on Many Issues Surrounding Carbon Dioxide Removal

One of the streams of work for The Institute for Carbon Removal Law and Policy is to provide broad education on carbon removal approaches and implications. Carbon removal is a big and complex subject matter, with much to unpack and debate. With this in mind, we launched our “Assessing Carbon Removal Webinar Explainer Series” in 2018. 

These one-hour webinars bring together Institute staff and guest speakers to explain what is known about varying carbon removal approaches and to explore big themes. The presentations and conversations delve into research needed to assess technical, legal, and social aspects and considerations of carbon removal technologies.,

Most recently presented in this series have been webinars on Agroforestry and Carbon Removal and Corporate Commitments, both of which have accompanying blog entries that outline the main points covered in the presentations, which can be found on ICRLP Carbon Removal Blog Posts page.

In addition to these recent webinars, there are a number of past presentations that provide a wealth of knowledge on carbon removal:

  • Enhanced Oil Recovery: A discussion on the technological, economic, and political issues associated with Enhanced Oil Recovery (EOR), including the costs involved, the project development perspective, EOR relative to saline storage necessary to scale up carbon storage, and why EOR should be decoupled from the decarbonatization agenda and policy.
  • Mitigation Deterrence: Mitigation Deterrence (MD) is where the pursuit of greenhouse gas removal (GGR) delays or deters other mitigation options. This webinar presents the results of a project that analyzes this issue and explores conditions in which GGR technologies can be used with minimal MD.
  • Direct Air Capture: The presentations within this webinar provide a comprehensive overview of mechanisms behind Direct Air Capture of carbon dioxide, which is the practice of utilizing chemicals to remove carbon dioxide from the air. 
  • Enhanced Mineral Weathering: This webinar presents the ins and outs behind varying proposed methods of Enhanced Mineral Weathering utilizing an array of minerals on land and in the oceans. 
  • Governance of Marine Geoengineering: This webinar followed the release of a CIGI Special Report on this topic. The presentations dig into the potential role of marine climate geoengineering approaches such as ocean alkalization and “blue carbon,” with a focus on the governance, research, deployment and potential risks associated with these approaches to carbon dioxide removal.
  • Communicating Carbon Removal: This webinar was presented following the release of ICRLP report “The Carbon Removal Debate” and explores the challenges associated with communicating the necessity for, and options behind, carbon dioxide removal.
  • The Brazilian Amazon Fires: What Do They Mean for the Climate?: As thousands of fires ripped across the Amazon in 2019, wreaking havoc and devastation, this webinar seeks to explore what these fires mean for the climate, and lessons are to be learned regarding global forest protection.
  • Soil-Based Carbon Removal: Soil harbors three times more carbon than is present in the atmosphere, and this webinar investigates whether healthy soils can help tackle climate change. Experts on the panel provide a scientific overview of soil carbon sequestration, while examining the risks, benefits, and uncertainties.  
  • NAS “Negative Emissions Technologies and Reliable Sequestration: A Research Agenda” Report: This report released by the National Academy of Sciences, Engineering and Medicine is the focus of discussion in this webinar. A few of the points addressed are the current state and potential for negative emissions technologies, conceptualizing scale in addressing climate change, and the impact of carbon removal on land use and soil, among others.
  • Potential Role of Carbon Removal in the IPCC’s 1.5 Degree Special Report: The panelists in this webinar examine this special report, released by the IPCC in 2018, examine what this report says about many aspects of carbon removal such as the potential need, governance, and classification. 
  • What We Know and Don’t Know about Negative Emissions: This webinar is aimed at providing a systematic overview of negative emissions technologies, discussing the status of research, ethical considerations, and how to spur future innovation and upscale research for advancing utilizations.
  • Accessing Carbon Dioxide Removal: As the introductory webinar that kicked off the series in 2018, the panelists dive into what carbon removal technologies are, their role in the portfolio of response to climate change, risks, ways to manage technologies in beneficial ways, and what the future could potentially hold. This webinar in particular serves as a valuable springboard for those who are relatively unfamiliar with carbon removal and seeking to learn more. 

All of these webinars are also available to view on our YouTube channel and on the ICRLP website. As this series continues to evolve, we encourage you to stay tuned for upcoming webinars going forward. If you are interested in joining our mailing list to receive notifications of upcoming webinars and our Newsletter, feel free to reach out to us at icrlp@american.edu.

 

ICR Explainer Series Webinar Summary: Agroforestry

Authored by Allison Tennant, Carbon Removal Program Assistant, Institute for Carbon Removal Law and Policy & Union of Concerned Scientists

On September 2nd, the Institute for Carbon Removal Law and Policy (ICR) hosted a webinar on agroforestry, the latest in our explainer series. ICR Fellow Jason Funk moderated a panel that featured: 

  • Susan Stein, Director of the USDA National Agroforestry Center 
  • John Munsell, Professor and Forest Management Extension Specialist in the Department of Forest Resources and Environmental Conservation at Virginia Tech
  • Patrick Worms, Senior Science Policy Advisor at the World Agroforestry Centre, presented on the different technical and economic aspects of agroforestry.

Susan Stein kicked off the presentations by giving the USDA definition of agroforestry: “The intentional integration of trees or shrubs with crop and animal production to create environmental, economic, and social benefits.” She then explained five types of agroforestry — forest buffer, alley cropping, silvopasture, windbreak, forest farming — and how they remove and store carbon. In the U.S., over 30,000 farms practice some form of agroforestry with government and private support.

John Munsell followed with the social, environmental, and economic benefits of agroforestry, such as increasing yield, increasing soil, improving air and water quality, and strengthening social capital. He also explained some of the barriers to widespread adoption and potential policies to address those issues. While a lack of awareness and knowledge of agroforestry among farmers poses one barrier, the time and space needed to see returns poses a more formidable obstacle.  Professor Munsell discussed upfront payments for land conversion, performance-based payments, and cost-share programs as ways to address that barrier. 

Patrick Worms rounded out the presentations by giving an international perspective and examples. He pointed out the great potential for agroforestry, and land management solutions in general, to remove carbon dioxide worldwide and the need for broader adoption. Currently, 43% of all agricultural land has more than 10% tree cover, but there are many opportunities for growth.

The presentations were followed by questions from the audience. 

The Institute for Carbon Removal Law and Policy would like to thank environmental journalist Erik Hoffner for helping to organize this webinar. Erik publishes a series on agroforestry for the award-winning environmental news site Mongabay.com, which you can find at https://news.mongabay.com/series/global-agroforestry/

Integrated Assessment Modeling of Carbon Removal at ICRLP

Authored by David Morrow, Director of Research, Institute of Carbon Removal Law and Policy, American University

Bioenergy with carbon capture and storage (BECCS) is sometimes described as the only technology ever invented by modelers. There’s a grain of truth to this: the idea of combining bioenergy with CCS to produce a negative emissions technology rose to prominence because of its adoption by integrated assessment modelers in the early 2000s. Since then, these models have provided one important tool for thinking about how carbon removal might play a role in climate policy. The Institute for Carbon Removal Law and Policy is helping to push the boundaries of integrated assessment modeling of carbon removal with two ongoing projects.

What are integrated assessment models?

Before we get to ICRLP’s modeling projects, let’s back up a bit. What are integrated assessment models (IAMs)? Basically, IAMs are computer models that combine a model of the climate system with models of the economy, the energy sector, and land use to help researchers think rigorously about possible climate futures. For instance, researchers can use these models to ask questions like, “What would happen to the energy sector and the climate if coal were phased out worldwide by 2050?” or, “How would the energy sector change over time if the whole world put a gradually rising price on carbon beginning in 2040?” Researchers can also use these models to identify decarbonization pathways by which the world could meet various climate policy goals, such as the Paris Agreement’s goal of limiting global warming “well below 2°C.” When you read headlines saying that the world needs to cut its emissions in half by 2030 in order to limit global warming to 1.5°C, you’re reading a conclusion based in large part on integrated assessment modeling.

CarbonBrief offers an excellent introduction to IAMs and their role in studying climate policy. If you prefer to learn by doing, check out Climate Interactive’s EnROADS model, an IAM that’s fast enough to run in your web browser.

How are IAMs used to study carbon removal?

Integrated assessment modelers realized almost twenty years ago that they could combine two technologies that were already represented in their models—bioenergy and CCS—to model a technology that actively removes carbon dioxide from the atmosphere. Research over the past two decades suggests that developing and scaling negative emissions technologies makes it much likely that the world can keep warming below 2°C or 1.5°C. In fact, modeling studies suggest that unless the world reduces its greenhouse gas emissions extremely rapidly over the next two or three decades, it may not be possible to limit warming below 1.5C without large-scale carbon removal

Until recently, however, few integrated assessment modelers had incorporated any kind of carbon removal into their model besides BECCS and reforestation. (For some notable exceptions, see recent papers led by Jessica Strefler, Giulia Realmonte, and Jay Fuhrman.) As a result, BECCS has long operated as a kind of stand-in for the wide variety of approaches to carbon removal that have been proposed. Actually implementing BECCS at the scales projected in many IAM scenarios would likely be disastrous because it would require devoting such vast tracts of land to bioenergy. Overcoming the conceptual and technical hurdles to modeling other approaches to carbon removal would be an important step in understanding what role carbon removal can realistically play in just and sustainable climate policy.

Integrated assessment modeling at ICRLP

Earlier this year, ICRLP launched a project to produce a variant of the Global Change Analysis Model (GCAM), a major IAM developed by the Joint Global Change Research Institute. I’m working with Postdoctoral Researcher Raphael Apeaning to extend GCAM’s ability to model carbon removal. That involves both incorporating additional approaches to carbon removal, starting with direct air capture, enhanced weathering, ocean alkalinization, and soil carbon sequestration; and giving GCAM the capacity to model various policies for incentivizing and supporting carbon removal. We gratefully acknowledge the financial support of the Alfred P. Sloan Foundation for this project.

I’m also supervising an undergraduate in American University’s School of International Service, Garrett Guard, as he uses GCAM to write his senior thesis on the role of BECCS in climate policy. His thesis grew out of a research project he did for a course I taught last year on using integrated assessment models for climate policy analysis. Garrett’s research looks at what happens when the world tries to meet various climate targets if we exclude fossil fuel CCS, BECCS, or both from the climate policy portfolio, as well as how that varies across different socioeconomic pathways.

 

 

Carbon Removal and Corporate Climate Commitments

Allison Tennant, Carbon Removal Program Assistant, Institute for Carbon Removal Law and Policy & Union of Concerned Scientists

The latest  webinar in the explainer series presented by the Institute for Carbon Removal Law and Policy (ICR)  delves into the role of carbon removal practices in corporate climate commitments. Recently, many companies have released net-zero climate commitments that include carbon dioxide removal technologies. In July, Apple, for instance, committed to becoming 100% carbon neutral for its supply chain and products by 2030, in addition to already having carbon neutral operations. To reach this goal, the company plans to reduce emissions by 75% and develop innovative carbon removal solutions for the remaining 25% of their footprint. Apple will mostly focus on natural climate solutions, partnering with Conservation International on ecosystem restoration and protection. Earlier this year, Microsoft also committed to going carbon negative by 2030 by utilizing methods of reforestation, soil carbon sequestration, and new carbon capture technologies. With companies continuing to play a larger role in the carbon removal sphere, ICR gathered a panel to evaluate the role that the corporate world plays and might play in the carbon removal world.

The panelists were Betty Cremmins, Lead at 1t.org (Trillion Trees Platform) North America; Jeremy Freeman, Founder/Executive Director at CarbonPlan; and Alex Laplaza, Analyst at Lowercarbon Capital. The panel was moderated by Nicole Pinko, Corporate Analyst and Engagement Specialist at Union of Concerned Scientists. Discussion revolved around questions such as: 

  • What sorts of commitments are companies making, and how does carbon removal fit into those plans?
  •  Are these commitments and the plans for achieving them realistic, especially with respect to carbon removal?
  •  When it comes to the carbon removal portion of their plans, how are companies currently investing in nature-based and/or technical solutions? 
  • How are these commitments likely to affect the development or deployment of carbon removal?
  • What should people be paying attention to when they read about these commitments and the plans to achieve them? 

A Q&A session followed the discussion in which the audience inquired about terminology companies should use, the Global North’s responsibility for off-shore emissions, and the issues with carbon offsets.

To watch this webinar, click here. Make sure to keep up-to-date on new additions to our webinar explainer series, and watch past webinars here. In addition, you can keep abreast of corporate carbon removal commitments via our regularly updated action tracker.

 

ICR Fact Sheets Provide a Comprehensive Overview of All Things Carbon Removal

Although the emerging field of carbon removal has great potential to help curb climate change when coupled with more traditional methods of mitigation, it is riddled with uncertainty. There are many risk factors and many components within each individual method that are still poorly misunderstood. The Institute for Carbon Removal Law and Policy is dedicated to creating a set of comprehensive tools that can aid in providing clarity on carbon removal practices and technologies on many different levels.

Among these valuable resources are a comprehensive set of Fact Sheets that provide overviews on each of the individual topics regarding carbon removal, the production of which was provided for by a grant from The New York Community Trust. These fact sheets are broken down into two categories, topics in carbon removal and approaches to carbon removal. 

The topics in carbon removal fact sheets provide an overview and background on:

What is carbon removal?

Nature-based solutions to climate change and 

Carbon capture & use and carbon removal

The approaches to carbon removal fact sheets break down the ten different topics, providing a deeper context to the potential methods behind carbon removal. Each of these provide not only an overview, but weigh in on the co-benefits & concerns, potential scales and costs, technological readiness, governance consideration and provide sources for further readings. These methods include:

Agroforestry: Incorporates trees with other agricultural land use which not only removes carbon dioxide but also provides benefits to farmers and their communities.

Bioenergy with carbon capture and storage: A technique dependent on two technologies. Biomass that is converted into heat, electricity, liquid gas or fuels make up the bioenergy component. The carbon emissions generated from this bioenergy conversion are then captured and stored in geological formations or long-lasting products, this being the second component of this method.

Biochar: A type of charcoal that is produced by burning organic material in a low oxygen environment, converting the carbon within to a form that resists decay. It is then buried or added to soils where that carbon can remain harbored for decades to centuries.

Blue Carbon: Refers to the carbon that is sequestered in peatlands and coastal wetlands such as mangroves, tidal marshes and seagrass among others, many of which have been destroyed in recent decades. 

Direct Air Capture: An approach that employs mechanical systems that capture carbon directly and compress it to be injected into geological storage, or used to make long lasting products.

Enhanced Mineralization: Also known as enhanced or accelerated weathering. Accelerates the natural processes in which various minerals absorb carbon dioxide from the atmosphere. One implementation involves grinding basalt into powder and spreading it over soils, causing a reaction with CO2 in the air, forming stable carbonate materials.

Forestation: This includes forest restoration, reforestation and afforestation. Forests remove carbon dioxide and through the trees within, and have the potential to store that carbon for long periods of time.

Mass Timber: A method that involves utilizing specialized wood products to construct buildings, therefore replacing emission-intensive material such as concrete and steel. Further, this wood stores carbon that was captured from the atmosphere through photosynthesis. 

Ocean Alkalization: A process involving adding alkaline substances, such as olivine or lime, to the seawater to enhance the ocean’s natural carbon sink.

Soil Carbon Sequestration: Also referred to as “carbon farming” or “regenerative agriculture.” This process involves managing land in ways that promote carbon absorption and sequestration within soils, especially prominent among farmland.

By reviewing each of these succinctly written fact sheets, it is possible for one to gain a solid understanding of what is happening in the world of carbon removal; the good, the bad, and the misunderstood.

NGO Engagement with Carbon Removal: Announcing a New Project for the Institute for Carbon Removal Law and Policy and the Union of Concerned Scientists

Authored by Allison Tennant, Project Assistant, Institute for Carbon Removal Law and Policy & Union of Concerned Scientists

Two years ago, The Institute for Carbon Removal Law and Policy (ICR) convened a group of representatives from over 20 national environmental groups at the Wingspread Center in Racine, WI. The goal was to spark and facilitate an ongoing sharing of perspectives and resources about carbon removal. Space was created for meeting attendees to probe various carbon removal approaches and issues, with the intent that information and findings from the meeting would inform exploration of carbon removal in their home institutions. 

Now, ICR has partnered with the Union of Concerned Scientists for a new and newly imagined round of work with the NGO community. In my new position, created with the kind support of the New York Community Trust, I will be reconvening the group that gathered at Wingspread and working with them to imagine and promote more just, equitable, and inclusive understandings of carbon removal. We will be seeking to expand the carbon removal conversation to draw on the knowledge, interests, and perspectives of a wider array of voices, recognizing that different carbon removal approaches are poised to have implications across a diverse set of sectors and communities.

As the IPCC Special Report on Global Warming of 1.5°C makes clear, carbon removal will need to be a part of the approach to keeping warming under 1.5°C; emissions reductions alone will no longer be enough. Governments and companies must now make large investments in R,D&D of carbon removal approaches to get technologies up to scale. Just as importantly, we need robust forms of evaluation and assessment of carbon removal options to ensure that any developments in this fast-moving field are attending to social and environmental imperatives. Careful evaluation of what carbon removal can and can’t do won’t happen without increased attention by civil society actors. 

With an upcoming US presidential election, there is opportunity for increased funding towards carbon removal, but there are also equity issues and guardrails to be considered. Over the next weeks and months, we’ll be working with the Wingspread group and an expanding set of civil society actors to find out what carbon removal questions still need to be addressed and work with them to try to figure out answers. They don’t all have to be on the same page, but the dialogue will help expose existing issues and workshop potential solutions. It’s going to be a big project, and I’m excited to see what will come out of it.

If you’re interested in finding out more about this new joint project between the Institute for Carbon Removal Law and Policy and the Union of Concerned Scientists, please contact me: ATennant@ucsusa.org. 

The Democratic Party’s Draft Policy Platform and the Potential Role of Carbon Dioxide Removal/Negative Emissions Technologies to Combat Climate Change

Authored by Wil Burns, Co-Director, Institute for Carbon Removal Law & Policy, American University

The Democratic party’s draft policy platform, drafted by the Democratic National Committees platform drafting committee, was released this week. The platform will be considered by the delegates to the upcoming Democratic National Convention in Milwaukee convention next month, where the delegates will make final decisions on the text of the non-binding policy document.

The draft’s climate section contains a number of provisions pertinent to carbon dioxide/negative emissions approaches, including the following:

  • In seeking to develop a “thriving, equitable, and globally competitive clean energy economy,” the United States should seek to “develop and manufacture next-generation technologies to address the climate crisis …” [p.44]. These technologies include “direct air capture and net-negative emissions technologies,” as well as “carbon capture and sequestration that permanently stores greenhouse gases …” [p. 48). The platform also calls for support for “the most historically far-reaching public investments and private sector incentives for research, development, demonstration, and employment of next-generation technologies …” [p. 48];
  • In pursuit of the objective of eliminating power plant carbon pollution by 2035 to “reach net-zero emissions as rapidly as possible [and no later than by 2050],” decarbonization strategies should include carbon capture and storage [p. 45];
  • In the context of the agricultural sector, the platform calls for a partnership to help farmers develop new sources of income including through, inter alia, lower-emission, and regenerative agricultural practices.” [p.47] While the contours of these practices are not outlined in the document, one would presume that it would include methods to rebuild soil organic matter, such as no-till agriculture and cover crops;
  • There are also several provisions related to public lands stewardship that, albeit vague, might help facilitate enhanced carbon sequestration. The platform calls for the development of a youth corps to conserve public lands. [p. 45] Moreover, it advocates full funding of the Land and Water Conservation Fund to ensure conservation of public lands, as well as programs to incentivize conservation initiatives on private lands, “including through private sector ecosystems markets.” [pp.48-9];
  • There is only one reference to the potential role of afforestation/reforestation in climate policy, with a focus on temperature impacts, with the platform calling for the planting of “millions of trees” in urban areas to “help reduce heat stress.” [p. 47]

The drafters’ engagement in the potential role of CDR/NETs approaches in climate policymaking is laudable, and reflects a potentially expanded role for such options compared to that contemplated in the New Green Deal, which briefly discussed tree-planting as a carbon sequestration strategy. At the same time, the draft platform is also an extremely underdeveloped set of proposals in terms of fleshing out potentially requisite levels of funding, necessary regulatory frameworks to facilitate research, development, and potential deployment of many of these options, and the daunting issue of how to integrate such approaches into the current climate policymaking domain at the state, national and international level. It is also notable that one of the most widely discussed potential carbon dioxide removal approaches, afforestation/reforestation, is given extremely short shrift in the document, with the only reference to tree planting focused on albedo effects rather than carbon sequestration potential. While the delegates will have the opportunity to hone the document, it’s unclear if they will have the expertise to address some of these concerns.

However, in the end, perhaps it’s helpful in itself to have a major party acknowledge the potentially important role of CDR/NETs options in pursuing the critical objective of net emissions neutrality in the next few decades. The platform establishes a foundation for the hard work that would inevitably need to follow to make this a reality.

 

 

 

The technological and economic prospects for CO2 utilization and removal

Authors:

Cameron Hepburn, Ella Adlen, John Beddington, Emily A. Carter, Sabine Fuss, Niall Mac Dowell, Jan C. Minx, Pete Smith & Charlotte K. Williams

Abstract:

Carbon dioxide utilisation – making valuable products from CO2 – is a potential way to lower the net costs of reducing emissions or of removing carbon dioxide from the atmosphere.  We review the economic and technological prospects of ten such pathways to assess scale and cost prospects in 2050. Using CO2 in chemicals, fuels, and via microalgae to make products, comprise ‘cycling’ pathways: they might reduce carbon dioxide emissions by displacing fossil fuel derived CO2 but they have limited potential for carbon dioxide removal.  Some CO2 chemicals, such as CO2 based polymers, are profitable in the present day, but CO2 based fuels are high up on the cost curve. ‘Closed’ pathways such as those involving construction materials can both utilise and remove carbon dioxide for the long term. They might be low cost, and the end-markets are large, but they have high regulatory barriers to scale.  Land-based CO2 utilisation pathways such as soil carbon sequestration, afforestation/reforestation and biochar can increase agricultural output and remove carbon dioxide. They can be characterised as ‘open’ pathways wherein the CO2 can return to the atmosphere easily, and they are relatively low cost. Using a process of structured estimation and an expert opinion survey, our assessment suggests that each of the ten pathways could scale to over 0.5 Gt carbon dioxide utilisation annually, although barriers remain substantial and resource constraints prevent the simultaneous deployment of all pathways.  Uncertainty over scaling means that there is a wide range of potential outcomes for 2050. Notwithstanding the many caveats, the potential scale of utilisation could be considerable. Much of this potential CO2 utilisation – notably in ‘closed’ and ‘open’ pathways – may be economically viable without dramatic shifts in prices. The specific assumptions of the low scenario imply an upper bound of over 1.5 Gt CO2 yr-1 at well under $100/t CO2u. For policymakers interested in climate change, these figures demonstrate the theoretical potential for correctly designed policies to incentivise the displacement of fossil fuels or the removal of CO2 from the atmosphere.  

 

 

Fixing the Climate? How Geoengineering Threatens to Undermine the SDGs and Climate Justice

Author: Linda Schneider

Abstract:

In the early 21st century, the world faces multiple existential challenges and global crises – among them is the climate crisis, but equally dramatic – and intimately related – are the escalating loss of biodiversity and natural ecosystems, growing social inequality, human rights violations, poverty and hunger, concentration of wealth, power and control, and authoritarian state tendencies. 

The international community adopted the Sustainable Development Goals (SDGs) in 2015, which aim to, among other goals, end poverty, hunger, reduce inequality, protect life on land and achieve gender equality, peace and justice. The framework of climate justice, promoted by grassroots social movements around the world, highlights the crucial role of global environmental and social justice in addressing the climate crisis – rather than treating it as a purely technical problem.

Both the SDGs at the international-institutional level, and the call for climate justice from the grassroots and social movement level, serve as a framework for addressing the interrelated crises of the 21st century in an integrated fashion. 

In the wake of the Paris Agreement, however, and with global emissions still on the rise, one set of alleged responses to the climate crisis is pushing to the front in international climate policy discussions. 

Geoengineering—large-scale technological interventions in the Earth’s natural processes and ecosystems are being promoted to counteract or delay some of the symptoms of climate change.

In the present paper I argue that geoengineering – both large-scale Carbon Dioxide Removal and Solar Radiation Management, the two main categories of climate geoengineering – are fundamentally at odds with the SDGs and with the strive for climate justice. In fact, they threaten to undermine the achievement of SDGs and climate justice for three broad reasons that I develop in the present article.

First, geoengineering is bound to exacerbate many of the other socio-ecological and socio-economic global crises we are facing. I show this for several of the proposed geoengineering technologies on land, in the oceans and in the atmosphere and how they would detrimentally affect the SDGs and the strive for climate justice. 

Furthermore, I elaborate on how geoengineering would deepen societal dependence on large-scale technological systems and on technocratic elites controlling them. One of the effects of such technological dominance in trying to solve global problems is that alternative and more holistic forms of knowledge, expertise, and practices that allow for complexity, diversity and resilience are excluded. By the same token, concerns over ecological and social risks and rights violations are pushed aside. Such one-dimensional large-scale technological fixes for the climate crisis run counter the aim of achieving global ecological and social justice and redressing past unjustness.

Finally, rather than overcoming the economic and political power structures that have caused the climate crisis in the first place, they create new spaces for profit and power for new and old economic elites and thereby serve to uphold the current status quo. As such, it is fundamentally incompatible with the notion of climate justice and will make it impossible to achieve the SDGs.

Southern Ocean Iron Fertilization: An Argument Against Commercialization but for Continued Research Amidst Lingering Uncertainty

Author: Tyler Rohr

Affiliations:

Current:

United States Department of Energy, Water Power Technologies Office, Washington D.C., USA

Past (but at time of original writing):

Massachusetts Institute of Technology, Department of Earth and Planetary Sciences, Cambridge, Massachusetts, USA 

Woods Hole Oceanographic Institution, Department of Marine Chemistry and Geochemistry, Woods Hole, Massachusetts, USA 

Abstract:

With substantive global action on climate change mitigation sputtering, some have begun to look at geoengineering as a possible alternative. Geoengineering is any deliberate, large-scale, manipulation of natural processes to affect the climate system, ostensibly to curb the effects of global warming. One such strategy is Southern Ocean Iron Fertilization, which seeks to remove carbon dioxide from the atmosphere by fertilizing the growth of marine phytoplankton in the ocean. Phytoplankton are microscopic plants that, like land-based plants, convert carbon dioxide into oxygen through photosynthesis. Together, marine phytoplankton produce half the oxygen we breathe. Further, when they die, they can sink out of the surface ocean and trap carbon in the deep ocean for hundreds of years. The goal of Southern Ocean Iron Fertilization is to increase this oceanic drawdown of carbon dioxide by stimulating marine phytoplankton growth by adding iron, an important nutrient, to large parts of the ocean where there is currently not enough iron to support growth. The notion of simply dumping dissolved iron into the ocean is seductively cheap compared to other forms of climate action, but it is not yet clear that fertilizing the Southern Ocean could actually create a sustainable carbon sink. A comprehensive review of the literature reveals that iron fertilization will almost certainly increase phytoplankton growth in the surface ocean, but it is much less clear how much of that carbon will sink out of the surface ocean and stay there versus how much will quickly end up back in the atmosphere. Given the lingering scientific uncertainty, it would be ill-advised to commercialize iron fertilization under emerging carbon offset markets. Offset markets allow companies or individuals to buy and sell activity that offsets their own emissions, either by sequestering carbon or reducing emissions elsewhere. Compliance offset markets, such as many proposed cap-and-trade frameworks, are carefully regulated to ensure activity is legitimate and appropriately compensated; however, voluntary offset markets, powered predominately by a sense of social responsibility, are not necessarily well regulated. Commercializing Southern Ocean Iron Fertilization on compliance offset markets is unlikely, and unadvisable, due to concerns over the strategy’s fundamental feasibility, the potential for unpredictable side-effects, and the inability to establish reliable baselines or accurately measure the full effects of fertilization, making it impossible to provide fair and consistent compensation. Never-the-less, recent history shows that fertilization activity on unregulated voluntary offset markets motivated by a the promise of an easy fix can, and will continue to, emerge. Continued research is needed to constrain the public perception and clarify the reality of an iron bullet.

 

Figure Caption: Idealized schematic of carbon cycling and the biological  in a natural High Nutrient Low Chlorophyll Region (HNLC) and an iron fertilized HLNC. White arrows represent carbon transport. The addition of iron may dramatically increase surface biomass but only a small fraction of that is additional sequestered in the deep ocean or the sea floor.

Link: http://www.sciencepolicyjournal.org/uploads/5/4/3/4/5434385/rohr_jspg_v15.pdf