Integrated assessment modeling of carbon removal at ICRLP

Authored by David Morrow, Director of Research, Institute for Carbon Removal Law and Policy

Bioenergy with carbon capture and storage (BECCS) is sometimes described as the only technology ever invented by modelers. There’s a grain of truth to this: the idea of combining bioenergy with CCS to produce a negative emissions technology rose to prominence because of its adoption by integrated assessment modelers in the early 2000s. Since then, these models have provided one important tool for thinking about how carbon removal might play a role in climate policy. The Institute for Carbon Removal Law and Policy is helping to push the boundaries of integrated assessment modeling of carbon removal with two ongoing projects.

What are integrated assessment models?

Before we get to ICRLP’s modeling projects, let’s back up a bit. What are integrated assessment models (IAMs)? Basically, IAMs are computer models that combine a model of the climate system with models of the economy, the energy sector, and land use to help researchers think rigorously about possible climate futures. For instance, researchers can use these models to ask questions like, “What would happen to the energy sector and the climate if coal were phased out worldwide by 2050?” or, “How would the energy sector change over time if the whole world put a gradually rising price on carbon beginning in 2040?” Researchers can also use these models to identify decarbonization pathways by which the world could meet various climate policy goals, such as the Paris Agreement’s goal of limiting global warming “well below 2°C.” When you read headlines saying that the world needs to cut its emissions in half by 2030 in order to limit global warming to 1.5°C, you’re reading a conclusion based in large part on integrated assessment modeling.

CarbonBrief offers an excellent introduction to IAMs and their role in studying climate policy. If you prefer to learn by doing, check out Climate Interactive’s EnROADS model, an IAM that’s fast enough to run in your web browser.

How are IAMs used to study carbon removal?

Integrated assessment modelers realized almost twenty years ago that they could combine two technologies that were already represented in their models—bioenergy and CCS—to model a technology that actively removes carbon dioxide from the atmosphere. Research over the past two decades suggests that developing and scaling negative emissions technologies makes it much likely that the world can keep warming below 2°C or 1.5°C. In fact, modeling studies suggest that unless the world reduces its greenhouse gas emissions extremely rapidly over the next two or three decades, it may not be possible to limit warming below 1.5C without large-scale carbon removal

Until recently, however, few integrated assessment modelers had incorporated any kind of carbon removal into their model besides BECCS and reforestation. (For some notable exceptions, see recent papers led by Jessica Strefler, Giulia Realmonte, and Jay Fuhrman.) As a result, BECCS has long operated as a kind of stand-in for the wide variety of approaches to carbon removal that have been proposed. Actually implementing BECCS at the scales projected in many IAM scenarios would likely be disastrous because it would require devoting such vast tracts of land to bioenergy. Overcoming the conceptual and technical hurdles to modeling other approaches to carbon removal would be an important step in understanding what role carbon removal can realistically play in just and sustainable climate policy.

Integrated assessment modeling at ICRLP

Earlier this year, ICRLP launched a project to produce a variant of the Global Change Analysis Model (GCAM), a major IAM developed by the Joint Global Change Research Institute. I’m working with Postdoctoral Researcher Raphael Apeaning to extend GCAM’s ability to model carbon removal. That involves both incorporating additional approaches to carbon removal, starting with direct air capture, enhanced weathering, ocean alkalinization, and soil carbon sequestration; and giving GCAM the capacity to model various policies for incentivizing and supporting carbon removal. We gratefully acknowledge the financial support of the Alfred P. Sloan Foundation for this project.

I’m also supervising an undergraduate in American University’s School of International Service, Garrett Guard, as he uses GCAM to write his senior thesis on the role of BECCS in climate policy. His thesis grew out of a research project he did for a course I taught last year on using integrated assessment models for climate policy analysis. Garrett’s research looks at what happens when the world tries to meet various climate targets if we exclude fossil fuel CCS, BECCS, or both from the climate policy portfolio, as well as how that varies across different socioeconomic pathways.

ICR Fact Sheets Provide a Comprehensive Overview of All Things Carbon Removal

Although the emerging field of carbon removal has great potential to help curb climate change when coupled with more traditional methods of mitigation, it is riddled with uncertainty. There are many risk factors and many components within each individual method that are still poorly misunderstood. The Institute for Carbon Removal Law and Policy is dedicated to creating a set of comprehensive tools that can aid in providing clarity on carbon removal practices and technologies on many different levels.

Among these valuable resources are a comprehensive set of Fact Sheets that provide overviews on each of the individual topics regarding carbon removal, the production of which was provided for by a grant from The New York Community Trust. These fact sheets are broken down into two categories, topics in carbon removal and approaches to carbon removal. 

The topics in carbon removal fact sheets provide an overview and background on:

What is carbon removal?

Nature-based solutions to climate change and 

Carbon capture & use and carbon removal

The approaches to carbon removal fact sheets break down the ten different topics, providing a deeper context to the potential methods behind carbon removal. Each of these provides not only an overview but weigh in on the co-benefits & concerns, potential scales and costs, technological readiness, governance consideration, and provide sources for further readings. These methods include:

Agroforestry: Incorporates trees with other agricultural land use which not only removes carbon dioxide but also provides benefits to farmers and their communities.

Bioenergy with carbon capture and storage: A technique dependent on two technologies. Biomass that is converted into heat, electricity, liquid gas, or fuels make up the bioenergy component. The carbon emissions generated from this bioenergy conversion are then captured and stored in geological formations or long-lasting products, this being the second component of this method.

Biochar: A type of charcoal that is produced by burning organic material in a low oxygen environment, converting the carbon within to a form that resists decay. It is then buried or added to soils where that carbon can remain harbored for decades to centuries.

Blue Carbon: Refers to the carbon that is sequestered in peatlands and coastal wetlands such as mangroves, tidal marshes and seagrass among others, many of which have been destroyed in recent decades. 

Direct Air Capture: An approach that employs mechanical systems that capture carbon directly and compress it to be injected into geological storage, or used to make long-lasting products.

Enhanced Mineralization: Also known as enhanced or accelerated weathering. Accelerates the natural processes in which various minerals absorb carbon dioxide from the atmosphere. One implementation involves grinding basalt into powder and spreading it over soils, causing a reaction with CO2 in the air, forming stable carbonate materials.

Forestation: This includes forest restoration, reforestation and afforestation. Forests remove carbon dioxide and through the trees within, and have the potential to store that carbon for long periods of time.

Mass Timber: A method that involves utilizing specialized wood products to construct buildings, therefore replacing emission-intensive material such as concrete and steel. Further, this wood stores carbon that was captured from the atmosphere through photosynthesis. 

Ocean Alkalization: A process involving adding alkaline substances, such as olivine or lime, to the seawater to enhance the ocean’s natural carbon sink.

Soil Carbon Sequestration: Also referred to as “carbon farming” or “regenerative agriculture.” This process involves managing land in ways that promote carbon absorption and sequestration within soils, especially prominent among farmland.

By reviewing each of these succinctly written fact sheets, it is possible for one to gain a solid understanding of what is happening in the world of carbon removal; the good, the bad, and the misunderstood. 

 

The Hidden Politics of Carbon Removal and Solar Geoengineering

The Institute’s co-director, Simon Nicholson, teamed up with solar geoengineering governance expert Sikina Jinnah from UC Santa Cruz to study the fate of a resolution on carbon removal and solar geoengineering that was introduced at the UN Environment Assembly in March 2019. Nature Geoscience published their analysis last week. UC Santa Cruz’s Jennifer McNulty explains their paper’s significance:

At this point, the greatest danger of climate engineering may be how little is known about where countries stand on these potentially planet-altering technologies. Who is moving forward? Who is funding research? And who is being left out of the conversation?

The “hidden politics” of climate engineering were partially revealed earlier this year at the fourth United Nations Environment Assembly (UNEA-4), when Switzerland proposed a resolution on geoengineering governance. The ensuing debate offered a glimpse of the first discussion in a public forum of this “third rail” of climate change, according to Sikina Jinnah, an associate professor of environmental studies at the University of California, Santa Cruz, and an expert on climate engineering governance.

In a commentary that appears in the current issue of Nature Geoscience, Jinnah and coauthor Simon Nicholson of American University describe the politics and players who appear to be shaping the discussion. Their analysis, “The Hidden Politics of Climate Engineering,” concludes with a call for transparency to help resolve questions of governance and “ensure that the world has the tools to manage these potent technologies and practices if and when decisions are ever taken to use them.”

“Twenty years ago, climate engineering seemed far-fetched—if not crazy—but these ideas are being taken more seriously today in the wake of widespread governmental failure to adequately reduce greenhouse gas emissions,” said Jinnah. “The U.S is the biggest culprit in terms of shirking responsibility, but everyone is falling short.”

The Swiss proposal generated debate that revealed troubling schisms between the United States and the European Union. It also underscored the challenge of trying to establish governance for the two dominant geoengineering strategies—solar radiation management (SRM) and carbon dioxide removal (CDR)—at the same time, because the technologies present very different potential risks.

Still a purely theoretical strategy, SRM would involve altering planetary brightness to reflect a very small amount of sunlight away from the Earth to create a cooling effect. One well-known proposal is to inject tiny reflective particles into the upper atmosphere. “The idea is to mimic the effect of a volcanic eruption,” said Jinnah. “Many people are scared of its planet-altering potential, and rightfully so.” When a team at Harvard University announced its intention to do a small-scale outdoor experiment, the public backlash was swift; amid calls for a more inclusive process, the project timeline was pushed back to include input from a newly established advisory board.

By contrast, CDR has to this point been relatively less controversial. Carbon removal strategies include existing options like enhancing forest carbon sinks, and more technologically far-off options such as “direct air capture” strategies that would suck carbon from the atmosphere. CDR is baked into many climate-modeling scenarios, largely in the form of bio-energy with carbon capture and storage (BECCS). BECCS involves the burning of biomass for energy, followed by the capture and underground storage of emissions.

“Climate engineering experts are not talking about this as a substitute for greenhouse gas emission reductions,” emphasized Jinnah. “The potential of climate engineering is to lessen the impacts of climate change that we’re going to experience regardless of what we do now.”

Debate reveals areas of concern

To piece together their account of what happened at the UNEA-4 meeting, Jinnah and Nicholson interviewed attendees, reviewed documents, and scoured online comments. Their analysis highlights several areas of concern, including:

  • Disagreement among countries about the current state and strength of SRM governance
  • The domination of research by North American and European scientists
  • The need to “decouple” governance of SRM and CDR
  • A significant split between the United States and the European Union over the “precautionary approach”

The key functions of governance include building transparency, fostering public participation, and shedding light on funding. Jinnah noted that governance can also provide what she called a “braking” mechanism to avoid what some call a “slippery slope” toward deployment.

Significantly, the Swiss proposal, which Jinnah and Nicholson describe as “modest,” suggested a preliminary governance framework that drew strong opposition from the United States and Saudi Arabia. “The United States  wants to keep its options open, and it certainly doesn’t want the United Nations telling it what it can and cannot do,” observed Jinnah.

The lack of transparency around climate engineering makes it difficult to get a comprehensive picture of who’s doing what, and where, said Jinnah, but academic scientists in North America and Europe are leading the effort to explore SRM technology; CDR is already attracting private investment. Little is known about the extent of China’s activity in climate engineering.

“Very little is happening in the developing world, which is problematic because they will experience the most dramatic impacts of climate change and have the least institutional capacity to cope with it,” said Jinnah. “Some countries are facing an existential crisis and could potentially—potentially—want to see climate engineering. Or they could oppose it, because they want the focus to be on emissions reduction. But we don’t know, because governments haven’t articulated their positions.”

Jinnah bemoaned the lack of collaboration with developing countries and expressed a desire to see them build their capacity to engage with the policy and politics of climate engineering.

The debate also underscored some of the differences between SRM and CDR in terms of potential viability and deployment, prompting Jinnah to observe that “decoupling” them might break the logjam and foster greater progress on parallel tracks.

The United States favored a far less “precautionary” stance than the European Union, which has historically opted to protect the environment in the absence of scientific certainty, as it did on the issue of genetically modified foods. As one of the few countries with an active SRM research program, the United States appeared eager to preserve the status quo and “leave its decision space unchallenged,” Jinnah and Nicholson wrote.

An important step forward

Despite the breadth and depth of disagreement that surfaced at the meeting, Jinnah sees the debate as a necessary first step. “As a researcher, I think this debate was an incredibly important step forward, because you can’t study the politics of this issue without data, which in this case is countries articulating their positions on this controversial issue,” she said.

“Research is needed so we can better understand our options,” she emphasized, then added: “I’d rather not live in a world that thinks about solar radiation management, but unfortunately that’s not our reality.”

You can find Sikina Jinnah and Simon Nicholson’s paper, “The Hidden Politics of Geoengineering,” on the Nature Geoscience web site: https://www.nature.com/articles/s41561-019-0483-7

Reflections on the IPCC special report on pathways to and impacts of 1.5ºC

Author: Matthias Honegger

This post originally appeared on the blog for the Institute for Advanced Sustainability Studies (IASS).

How is this report different from previous IPCC reports?

The main difference to previous reports issued by the Intergovernmental Panel on Climate Change (IPCC) is that, according to the last assessment report, we have now used up the so-called “carbon budget” for the 1.5°C target. Therefore, in principle, we should not emit another single ton of CO2 going forward. The last report did not pay much attention to the 1.5°C target because too few studies even addressed this ambitious scenario. The Paris Agreement and the request to the IPCC for this latest report have changed this: more and more studies have considered how the goal could be achieved – with similar results, but greater urgency. What has changed since the last assessment report is that we are running out of time. More and more observers rate it as extremely unlikely that we can still get close to 1.5°C without the use of controversial solar geoengineering to directly alter the energy balance of the planet (also known as “Solar Radiation Management”). The latter is mentioned in the report as Solar Radiation Modification, but dismissed as too risky and insufficiently understood, which is understandable given the necessarily cautious approach of the IPCC in light of the still limited amount of research dedicated to seriously exploring the possibilities of SRM. However, a growing number of climate modelling studies consistently conclude that the use of SRM to partially counteract warming could help contain climate change and possibly avoid much suffering and harm. The same studies also consistently find that SRM could under no circumstances be a substitute for CO2 reduction and CO2 capture, but would potentially be useful as a risk-reducing supplement.

What political signals does the report send?

In the context of international climate policy the special report is expected to serve as a wake-up call for decision-makers. The IPCC report shows that the 1.5°C target, which in Paris gave hope to the most vulnerable populations, is slipping through our fingers. Unless the international community immediately and dramatically changes course, this goal is no longer within reach. A study from last year, which to my knowledge is not quoted in the report, found a one percent (1%) likelihood that warming would remain at 1.5°C if current trends continue. The international community is not even on a path to the less ambitious 2°C target. If today’s nationally determined contributions (NDCs) are implemented unchanged, warming is expected to reach 3°C above pre-industrial levels by 2100 – and more beyond the turn of the century. With millions of people depending on robust climate policy to secure their futures, this state of affairs should not be taken as an excuse to give up. The report unequivocally states that warming of 1.5°C would cause much less suffering and harm than warming of 2°C. There is not a shred of doubt that the corresponding steps must be taken now.

To what extent does it still make sense to talk about the 1.5ºC or 2ºC target? Do we have to admit that these goals are now barely achievable?

Achieving the 1.5°C goal with existing means of CO2 emission reductions will require drastic measures comparable perhaps only to the transformative efforts undertaken by societies in the face of war. The vast majority of scenarios assume that billions of tons of CO2 will also have to be removed from the atmosphere through the widespread application of emerging technologies such as bioenergy and CO2 capture and storage (BECCS) or the direct air capture and storage of CO2 (DACS) – with the corresponding costs. However, both of these approaches present their own challenges when deployed on this scale and have accordingly been largely ignored by decisionmakers to date. The use of bioenergy could potentially result in massive land use conflicts, while direct air capture requires vast amounts of energy and is, in its present state, both under-researched and prohibitively costly. Politics should not rely on such approaches without doing what is necessary to shape them into feasible policy options, and yet that is what happens every time we calculate our chances for the 1.5°C or 2°C target.

What are we to make of the current situation?

The IPCC authors were faced with the dilemma that the 1.5°C target is now practically out of reach despite significant political efforts to reduce or remove CO2 emissions. In conversations with colleagues in climate research, it has repeatedly struck me that many consider it unethical to even consider the possibility that current forms of action could fail to achieve the goal: Many colleagues suspect that expressions of doubt would undermine the political will to further pursue these crucial measures. Whether this is indeed the case is hard to answer and pragmatic optimism definitely has an important role to play. However, I think society has a right to be fully informed by science: We should all be aware of the risk-laden future we are approaching and not limit our focus to the best possible scenario. Accordingly, we would not be well advised to prematurely exclude potential options – from emissions reductions to adaptation, CO2 removal and solar geoengineering (SRM) – even if these options do not appear perfect at first glance and require further research. Anyone who deals with financial investments knows about the necessity of diversification when dealing with risks.

The full report can be found here on the IPCC website.

 

Matthias Honegger is a project scientist at the Institute for Advanced Sustainability Studies (IASS) in Potsdam, Germany. In his role there, he focuses on the question, whether biased risk perceptions of climate engineering contribute to a marginalization of climate engineering as a potential element of a broader strategy to address climate change. He is also exploring the current climate policy regime to identify governance elements, which could help consider carbon removal technologies and eventually solar radiation management approaches in an adequate manner within the international climate regime.

Ensuring That We Hear the Voices of the Vulnerable: Toward a Human Rights-Based Approach to Bioenergy and Carbon Capture and Storage

Author: Wil Burns

A version of this piece with references can be found here: Burns, The Paris Agreement and Climate Geoengineering Governance, CIGI Papers No. 111 (October 2016)

In the past few years, there has been growing interest in potential large-scale deployment of Bioenergy and Carbon Capture and Storage (BECCS). The vast majority of the integrated assessment models in the IPCC’s Fifth Assessment model which effectuated holding temperatures to below 2°C contemplated large-scale deployment of BECCS, with a median commitment of 12 gigatons of carbon dioxide removal annually in the latter half of the century. Many commentators and policymakers have also argued that so-called “negative emissions technologies,” such as BECCS, will be critical to meet the Paris Agreement’s objectives to “achieve a balance between anthropogenic emissions by sources and removals by sinks of greenhouse gases in the second half of this century.”

BECCS seeks to generate energy by converting vast amounts of biomass into liquid biofuels, or via the direct burning of biomass at appropriately equipped power stations. Bioenergy systems in BECCS are paired with a carbon capture method, facilitating the capture of carbon dioxide emissions at the source of combustion. Carbon dioxide can then be stored terrestrially or under the world’s oceans, or potentially utilized for other purposes, such as enhanced oil recovery, biochemical conversion into biofuels, or for energy storage technologies.

Some members of the climate engineering community have sought to portray carbon dioxide removal options such as BECCS as “benign,” or “safe,” perhaps in comparison to potential risks associated with solar radiation approaches. However, at least in the case of BECCS, this clearly may not prove to be true. Delivery of a relatively modest three gigatons of carbon dioxide equivalent negative emissions annually from BECCS would require conversion of a land area of approximately 380-700 million hectares in 2100, translating into 7-25% of agricultural land and 25-46% of arable and permanent crop area. This could result in massive increases in food prices for some of the world’s most vulnerable people. For example, one recent study indicated that even modest increases in bioenergy development could increase the number of malnourished children in sub-Saharan Africa by 3 million, with an 8% decline in calorie availability.

BECCS could also have a huge water footprint. By 2100, BECCS feedstock production at scale could require approximately 10% of the current evapotranspiration from all global cropland areas, or of the same magnitude as all current total agricultural water withdrawals This is at a time that when global water withdrawals are projected to increase by 20% and the number of people experiencing water shortages could grow by billions. Large deployment of BECCS could also exacerbate this threat by further degrading water quality by salinization, and from fertilizer and pesticide runoff associated with production of bioenergy feedstocks.

Many of the most propitious areas for bioenergy development are also characterized by high-levels of biodiversity, with a large share of endemic species. Recent research indicates that large-scale BECCS deployment could have profound impacts on biodiversity, primarily due to potential land conversion. More specifically, BECCS could “vastly accelerate the loss of primary forest and natural grassland, resulting in the loss of up to one-fifth of natural forests, grasslands and savannahs. This could precipitate habitat loss for many species, and ultimately, “massive” changes in species richness and abundance. Indeed, one recent study concluded that large-scale deployment of BECCS could result in a greater diminution of terrestrial species than temperature increases of 2.8°C above pre-industrial levels. Other potential impacts of BECCS deployment could include undermining the income of those without land tenure in developing countries where large amounts of land might be diverted for bioenergy production, including through “land grabs,” as well as substantial increases of pollution, including through massive new perturbations of the nitrogen cycle.

Institutional governance mechanisms for climate engineering research and/or deployment should be structured to facilitate consideration of the potential impacts of BECCS on human rights.

How could individuals and groups that might be adversely impacted by BECCS deployment seek to protect their interests, and encourage strategies that can ameliorate associated risks? One approach would be to invoke human rights interests. For example, a persuasive case could be made that  BECCS’ potentially negative impact on food security and prices could violate the right to food, as recognized, inter alia, under the International Covenant on Economic, Social and Cultural Rights, the Convention on the Rights of the Child, and the Universal Declaration of Human Rights. The threats to water supplies that might be posed by BECCS could be construed to violate the right to water, recognized, inter alia, under the Convention on the Elimination of All Forms of Discrimination against Women and the Convention on the Rights of the Child. Loss of biodiversity could undermine the right to health under instruments such as Universal Declaration of Human, the Convention on the Elimination of All Forms of Racial Discrimination, and the Convention on the Rights of the Child, as well as the rights of indigenous peoples to access to the benefits of biodiversity as a resource under instruments such as the Convention Concerning Indigenous and Tribal Peoples in Independent Countries and United Nations Declaration on the Rights of Indigenous Peoples.

Institutional governance mechanisms for climate engineering research and/or deployment should be structured to facilitate consideration of the potential impacts of BECCS on human rights. This could be operationalized by incorporating a Human Rights-Based Approach (HRBA) into such institutions. A HRBA The hallmark of the HRBA is a focus “on the relationship between the rights-holder and the duty-bearer and revealing gaps in legislation, institutions, policy and the possibility of the most vulnerable to influence decisions that have impact on their lives.” An HRBA establishes a normative framework for addressing systematic and structural injustices, social exclusions and human rights repressions. The HRBA has been embraced by international, national, and sub-national governmental and non-governmental organizations in a wide array of contexts, including, health, development, and environmental protection.

Drawing on guidelines developed by human rights and development institutions, applying the HRBA to consideration of BECCS as a climate engineering option should include the following elements:

1. Human Rights Impact Assessments

The HRBA would facilitate a process to identify the specific potential impacts of BECCS and associated potential human rights considerations, as well as the specific groups likely to be impacted. A reliable method to effectuate this goal would be to mandate the preparation of a Human Rights Impact Assessment (HRIA) for individual BECCS programs, and on a programmatic basis.

HRIAs are assessment protocols that assess the consistency of policies, legislation, projects, and programs with human rights. It is a particularly appropriate instrument in the context of emerging high-risk technologies such as climate engineering in that its focus is not on past violations, but rather on developing tools to avoid violations of rights in the future.

An HRIA process in the context of BECCS should include the following elements:

    • A scoping process that would identify rights-holders and duty-bearers, and develop relevant indicators to use in the process to help assess potential impacts and their relevance to the human rights interests of rights-holders.

In identifying rights-holders, the HRBA focuses on protection of the rights of excluded and marginalized populations, including those whose rights are most likely to be threatened. Indicators should be designed to assess State intent to comply with human rights mandates, measure State implementation of human rights obligations, and measure State human rights performance.

    • An evidence gathering process to help assess the potential impacts of deployment of BECCS.

One critical requirement of the HRBA process would be greatly enhanced scientific understanding of the impacts of large-scale deployment of BECCS, including regional impacts that might adversely impact specific potential rights-holders.

    • An ex ante deliberative process between rights-holders and duty-bearers that would help identify specific concerns of rights-holders and duty-bearers.

A critical component of any potential governance architecture for climate engineering is engagement of populations in regions where impacts are likely to be most extreme, especially in developing countries. This participatory component of the HRIA process could help promote this objective by operationalizing procedurally oriented human rights provisions, including the right to information and the right to public participation.

In developing this component of the HRIA, efforts should be made to go beyond merely soliciting public opinion on climate engineering issues, usually characterized as public communication or public consultation, to the establishment of large-scale public deliberative processes.  Public deliberative processes seek to afford citizens, or a representative subset thereof, the opportunity to discuss, exchange arguments, and deliberate on critical issues, as well as to seek to persuade one another of the judiciousness of their solutions.

2. Analysis and Recommendations

This element of the HRIA process should include assessment of the human rights impacts of BECCS proposals, and an assessment of State responsibilities to respect, protect and fulfil human rights in this context. This step should also include the critical element of the development of recommendations to avoid or ameliorate potential impacts on human rights, or alternative means to achieve climatic goals that would avoid human rights violations. This obligation discussing mitigation and alternative options is also an important component of environmental impact assessments at both the international and national levels.

    • Assessment of the capacity of rights-holders to exercise their rights and duty-bearers to fulfill their respective obligations, as well as strategies to bolster capacities.

Capacity, broadly defined, is a critical consideration in determining the ability of duty-bearers to meet their obligations and rights-holders to claim their rights. In the context of a human rights assessment of BECCS, this should include an assessment of human and economic capacity of duty-bearers to protect human rights interests. It should also an assessment of rights-holders’ capacities, including access to pertinent information, especially for marginalized or traditionally excluded groups, and ability to obtain redress.

    • Establishment of a program to monitor and evaluate both outcomes and processes, guided by human rights standards and principles

Implementation of a human rights monitoring programs in the context of BECCs should include the use of role and capacity analysis to assess the obligations of institutions at the international and national level to monitor the impacts of climate engineering, as well as their capacity and analysis of existing information systems and networks to assess critical information gaps to effective monitoring by decision makers, rights-holders and rights-bearers.

Monitoring could be particularly effective in terms of deployment of BECCS. Projections of potentially sustainable levels of bioenergy deployment are “systematically optimistic” and not based on empirical observations or practical experience.  One way to address this challenge is to foster “learning by doing” by close monitoring of incremental efforts to expand the role of biomass in energy production. Close monitoring of the first few exajoules of energy crops would help realistically assess purported benefits of integrated crop and energy production, and the sustainability of energy crop extension into allegedly marginalized, degraded and deforested lands.

    • Ensure that programs are informed by recommendations from international human rights bodies and mechanisms

The UNFCCC would benefit from collaboration with human rights bodies, including UN bodies, such as the Office of the United Nations High Commissioner for Human Rights; the United Nations Human Rights Council; human rights treaty bodies, such as the Human Rights Committee and the Committee on the Rights of the Child; regional bodies, such as the Inter-American Commission on Human Rights and the African Commission on Human and People’s Rights; and non-governmental organizations, such as Human Rights Watch and the International Red Cross.  Collaboration should also be explored with other organizations that may help inform the process, such as the Global Bioenergy Partnership (GBEP), comprised of both State and non-State actors.  The GBEP has developed a set of sustainability indicators intended to inform decision-making and foster sustainability, including in the context of socioeconomic considerations.

The Paris Agreement is likely to be the key institution for governance of BECCS, as it explicitly provides for the use of carbon dioxide removal processes to help meet party INDCs. Given the fact that the Agreement explicitly calls for consideration of the human rights impacts of climate response measures in its Preamble, I would suggest that the Parties begin to consider how a HRBA might inform consideration of BECCS in the future. This could be facilitated through the Forum on the impact of the implementation of response measures, which is administered by the Subsidiary Body for Science and Technological Advice and the Subsidiary Body for Implementation. This could provide a good model for incorporation of the HRBA into other pertinent institutions in the future also.

There has been extensive discussion in recent years of how climate change is adversely affecting the human rights of some of the world’s most vulnerable peoples. Every effort should be made to ensure that our efforts to address climate change do not do the same.

Wil Burns, PhD, is a Co-Executive Director of FCEA and is based in Berkeley, California. He also serves as non-residential scholar at American University’s School of International Service and a Senior School at the Centre for International Governance Innovation in Canada. He previously served as the Director of the Energy Policy & Climate program at Johns Hopkins University in Washington, DC. He also serves as the Co-Chair of the International Environmental Law Committee of the American Branch of the International Law Association. He is the former President of the Association for Environmental Studies & Sciences, and former Co-Chair of the International Environmental Law interest group of the American Society of International Law and Chair of the International Wildlife Law Interest group of the Society. He has published over 80 articles and chapters in law, science, and policy journals and books, and has co-edited four books. He holds a Ph.D. in International Environmental Law from the University of Wales-Cardiff School of Law.

‘Uncertainties’ is an understatement, when it comes to BECCS

Author: Rachel Smoker, Biofuelwatch

In 2012, Biofuelwatch published a report titled “Bioenergy with carbon capture and storage: Climate savior or dangerous hype?”  We had long been working to reveal and oppose large scale industrial and commercial scale bioenergy in various forms ranging from ethanol refineries to soy and palm oil biodiesel to coal plants converting over to burn wood. We had argued that corn ethanol would drive biodiversity loss, cause food prices to rise and contribute to chronic hunger, while failing to reduce emissions, as it has in fact done. We argued that burning wood as a substitute for coal would create a new driver of deforestation, even as protecting forests and ecosystems was recognized as a “best line of defense” against climate change. We pointed out that large scale bioenergy was incompatible with the simultaneous push to quantify, commodify and protect land based carbon sinks and their “services” (often for the dubious purpose of providing offsets to polluters…). We highlighted the human rights impacts, as land grabs for bioenergy escalated in Africa and elsewhere. And we argued over and over that the carbon consequences of bioenergy were far from “climate friendly” or “carbon neutral,” a myth that has been perpetuated by industry proponents and even parroted by many naive environmentalists.

When we learned that BECCS was being advocated as an approach to “mitigation,” we turned our attention to providing a critique based on many of those, by now familiar, arguments.  When BECCS spilled into the debates on climate geoengineering, we were outraged. Then even the supposedly scientific body, the IPCC released their Working Group III (Mitigation) Summary for Policymakers in April 2014, it stated that:  “Mitigation scenarios reaching about 450 ppm CO2eq in 2100 typically involve temporary overshoot of atmospheric concentrations as do many scenarios reaching about 500-550 ppm CO2 eq in 2100. Depending on the level of the overshoot, overshoot scenarios typically rely on the availability and widespread deployment of BECCS and afforestation in the second half of the century. The availability and scale of these and other Carbon Dioxide Removal (CDR) technologies and methods are uncertain and CDR technologies and methods are, to varying degrees associated with challenges and risks (see Section SPM 4.2, high confidence).”  While they acknowledge “uncertainties,” they nonetheless incorporate BECCS into models as if its feasibility and effectiveness is a given.

While they acknowledge “uncertainties,” they nonetheless incorporate BECCS into models as if its feasibility and effectiveness is a given.

In fact, “uncertainties” is an understatement. Over the years we have been making our arguments heard and fighting to oppose large scale bioenergy projects and policies, a burgeoning body of peer reviewed scientific literature has been published supporting and substantiating the concerns we raised, and public opinion has evolved and shifted. Witness for example how corn ethanol, the darling of big agribusiness, some farmers, the oil industry and many environmentalists – has fallen out of favor in public perception. Over the past few years the EPA has been lobbied by a diverse assortment of industry groups to repeal the ethanol mandate, and policymakers have supported that with introduction of legislation.

In Europe, policymakers have (at least) taken note of the evolving understanding of bioenergy, though that has not been reflected back on policy as of yet.  There have been drawn out debates over indirect land use change and “sustainability standards” in particular, with the European Commission and Council suggesting that biofuel targets should be eliminated from the next climate and energy package (after 2020).

Nonetheless, avid proponents of BECCS hold fast to the simplistic claim that it can provide a “fix” for the climate, even permitting “overshoot” – allowing greenhouse gas concentrations to rise above what is indicated for long term stabilization based on the assumption that the excess can later be “cleaned up”.

In a recent reality check, scientists estimated what it would take to sequester 1 billion tonnes of carbon using BECCS based on switchgrass feedstock. Their findings showed a startling 218-990 million hectares of land would have to be converted to switchgrass (which is 14-65 times as much land as the US uses to grow corn for ethanol); also 17-79 million tonnes of fertiliser a year – which would be 75% of all global nitrogen fertiliser used at present; and 1.6-7.4 trillion cubic metres of water a year.

Even if such a BECCS-project was to actually sequester a billion tonnes of carbon a year, the authors point out that the nitrous oxide emissions from the extra fertilizer use alone would, over the course of a century ‘offset’ 75-310% of that sequestered CO2. In other words: Increased fertilizer use alone would likely mean that either of those projects would increase greenhouse gas emissions overall and thus make climate change even worse. That does not even include the vast carbon emissions from clearing trees, shrubs and grass from hundreds of millions of hectares of land, destroying large reservoirs of soil carbon, or the emissions from all the fossil fuels burned to transport and process switchgrass. Nor does it include emissions from producing the synthetic fertilizers.

BECCS advocates also adhere to the simplistic notion that all bioenergy (from corn ethanol to burning wood) is “carbon neutral.”

BECCS advocates also adhere to the simplistic notion that all bioenergy (from corn ethanol to burning wood) is “carbon neutral.” Therefore, it is argued, adding CCS further renders it “carbon negative”.  The “carbon neutral” claim has been refuted time and time again in scientific literature.  Timothy Searchinger was among the first to do so with a paper entitled “A Critical Climate Accounting Error“. Others have further elaborated on the carbon implications of various forms of bioenergy, from corn ethanol to crop residue cellulosic fuels to wood bioenergy. When full consideration is given, including impacts on soils, fertilizer use and both direct and indirect land use change, bioenergy processes are, in reality, far from “neutral”.

A case in point is wood bioenergy. Conversion of coal plants to burn wood, dedicated new-build wood burning power plants as well as combined heat and power and biomass boilers for heating are creating huge new demand for wood pellets. Wood burning is subsidized as renewable energy and also favored for use in dirty older coal plants that must meet new regulations on sulphur dioxide emissions.[1]  Hence large coal plants such as DRAX in the UK are converting to burn wood pellets. In the UK, these are largely imported from the southeastern USA.  While the energy industry claims to use only “wastes and residues”, those are clearly not abundantly available. Recent investigation of the largest pellet producer in the US, Enviva, revealed that they were sourcing wood from remaining pockets of endangered Atlantic coastal forests and then shipping them across the Atlantic to burn with coal.

Cutting trees to burn (or refine) for bioenergy can hardly be considered carbon neutral or climate friendly.[2] Though this would seem to be common sense, there are now many scientific studies showing that uncut forests (and their soils) store more carbon than those that are disturbed and harvested[3], and continue to do so as they grow older, storing far more than fast rotation industrial tree plantations. Even ignoring the impacts on forests, harvest and transportation and looking only at the emissions coming from smokestacks, wood releases around 50% more CO2 per megawatt of electricity generation than coal!

If bioenergy is not carbon neutral, then it simply cannot be rendered carbon negative by adding CCS, even if captured carbon were securely stored away (which we will see below, is unlikely).

So the enthusiasm for BECCS and continued “carbon negative” rhetoric seems a bit puzzling.  Are proponents of BECCS just horrifically poor at math?  Or is there some other motive behind the ongoing support for a technology that appears entirely nonsensical and lacking credibility?  Perhaps BECCS supporters are scared stiff about the pace and scale of global climate change, understand that desperate measures are needed, and consider BECCS, in spite of shortcomings, to be “more benign” than other approaches such as sulphate particle injection into the stratosphere? That was certainly the overarching mood at the recent IASS conference on climate geoengineering in Potsdam, Germany.

Or perhaps there is something else going on?  Many climate “solutions” that are being offered to us are in fact those that large and powerful corporations such as the oil companies are willing to engage.  We have been hearing the term “clean coal” for decades now.  Why the persistence?

Here is one possibility: according to an analysis commissioned by the U.S. Department of Energy (DOE) there are large amounts of oil lying around in the difficult to access depths of previously depleted oil wells.  That oil could be accessed using “enhanced oil recovery”, which can be achieved by pumping compressed CO2 into those wells to force out the remaining difficult to access oil.[4]  They project that at least 137 billion barrels of oil could potentially be extracted, 67 billion barrels of which could be economically recoverable at a price of $85 a barrel.  That is three times the current U.S. proven reserves!

The National Energy Technology Laboratory “EOR Primer” states that “somewhere around 85 billion barrels of oil are recoverable using CO2 EOR, which currently is responsible for about 4 percent of U.S. oil production, displaying a long-term growth trend that stands in stark contrast to the long-term decline trend for U.S. oil production overall. Certainly, the volume of “stranded” oil left behind in U.S. reservoirs after conventional primary and second recovery techniques is massive—as much as two-thirds of all the oil discovered in the United States resides in this category.”[5]

In short, with oil reserves becoming more and more difficult to access and extract, EOR is becoming more and more attractive.

The US Chamber of Commerce recognizing this, states: “In terms of economic and energy security, this [EOR] means billions of dollars of new investment in the U.S. and production potential of 4 million barrels a day of oil for 50 years from existing US oil fields. The investment required would not just be in oil fields themselves but also in power plants, pipelines and other industries that capture CO2 from their industrial processes., The economic benefits will also flow to the state and federal governments with an estimated 1.4 trillion in new government revenues. In addition to the direct benefits to the U.S., the technology used to produce this additional oil will help maintain US leadership in oil production technology, creating opportunities around the world for U.S. companies.”[6]

What is needed to make these dreams of riches come true? Chamber of Commerce states:  “The challenge of realizing this potential is primarily the availability of CO2 at prices that support economic operations. This is also one of the opportunities since CO2 is emitted by power plants and many industrial processes.”  And the MidwesternGovernors Association, major advocates for CCS development state: “With unstable oil prices, commercially proven technology and know-how readily available and private capital waiting to invest, the MGA CCS Task Force aims to address the major remaining barrier to ramping up EOR: the lack of industrial sources of captured CO2 large enough and sufficiently long-term to justify private investment in pipelines and other infrastructure needed to expand EOR to additional fields.”

According to the National Enhanced Oil Recovery Initiative there is a market for somewhere around 20 billion metric tons of CO2.  The Natural Resources Defense Council (purportedly an environmental group!) offers that supplying adequate supplies of CO2 would require installation of between 69-109 gigawatts of coal and natural gas power plants equipped with carbon capture.[7] Indeed, what they are advocating for is construction of vast new fossil fueled power plant capacity as a way to provide cheap CO2 to facilitiate extraction of more oil.[8]

Somehow, many in industry, academics and policymaking as well as certain members of the public, have been convinced that this is a “solution” to the climate crisis.

Carbon capture is costly in part because it requires additional energy to capture and separate CO2 from a heterogeneous mix – as emerges from the stack of a coal combustion facility for example. Capturing the nearly pure stream of CO2 emitted from corn ethanol refinery fermentation processes is cheaper however, and footing the bill for the added costs associated with carbon capture can be further offset by taking advantage of the market for CO2 availed by EOR.

According to advocates from the Great Plains Institute, “Ethanol won’t be a large source of CO2 over time compared to power plants, but it will be an important one because it can be an early participant in providing CO2 to the oil industry—there really are no technological barriers whatsoever.”

A key question (assuming we even wanted to pursue it this far), is whether CO2 used for EOR, is “sequestered” or not?  Projects that employ EOR are after all, referred to as CCS – but is the “S” really happening? Or is the CO2 used for EOR just re-released into the atmosphere along with the carbon from yet more oil extraction?  Finding the answer to that question has not proven straightforward. One almost gets the sense there is deliberate obfuscation. In the EOR process, CO2 mixes with the oil, much like detergent mixes with grease when dishwashing. That expands the volume and forces the oil out. So once the oil/CO2 mixture has been extracted, presumably it must then be separated out again and perhaps then reinjected back into the well.  All of those added steps ust contribute  to costs and energy demands of the process. The term “Carbon Capture and Storage thus appears to be largely a misnomer and indeed the term “Carbon Capture and Utilization” is now coming into use along with terms such as “Negative Emissions”.

In other words: we don’t know, and we will leave it to future generations to deal with the consequences.

If CO2 is captured following EOR and re-injected into underground storage spaces, those wells would need to be capped and sealed to ensure no leakage.  The Chamber of Commerce states that “If CO2 sequestration for long term storage is planned for the site, then a monitoring plan is developed and implemented. Once monitoring demonstrates that CO2 has not migrated out of the rock formation over the near term (tens of years) then there can be great certainty that no migration will occur in the long term (hundreds or thousands of years).”  In other words: we don’t know, and we will leave it to future generations to deal with the consequences.

Common sense, informed by our current understanding of earth history, plate tectonics and earthquakes tells us that assuming long term CO2 storage would be foolish. CO2 is not only a danger to climate, but in concentrated form, it is a lethal poison. Any abrupt release of concentrated CO2 could have serious impacts on those exposed, as well as contributing a sudden spike of CO2 to climate. Multiple small leaks also pose risks. They can occur at many points from capture process to compression to pipeline transport to injection, separation and reinjection and storage site leaks.

Assuming long term storage of CO2 underground is foolhardy.  Experience with the wrongful claims made by the nuclear industry (Chernobyl, Fukushima etc.) or by the oil industry (Deep Horizon) should serve as clear lessons:  Relying on industry claims about safety and reliability is unwise. Precaution is very highly advised!

The underlying motive behind CCS remains  to perpetuate the ongoing use of fossil fuels. At the recent UN Climate Summit in New York City, the World Business Council on Sustainable Development released a bizarre animated portrayal of the city buried under endless floods of oil. Their conclusion to the problem of such gluttonous and ongoing oil consumption: a carbon tax with the proceeds directed to developing “carbon capture and utilization” (EOR).

Concerns aside, what experience do we have with CCS? The coal industry has been proclaiming the potential for “clean coal” in spite of virtually no existing practice, for decades. Yet CCS remains very expensive, largely nonexistent and where it does exist, “storage” remains a misnomer.

A “groundbreaking” was just held for the Petra Nova facility in Texas, slated to be the “world’s largest”. This facility will use captured CO2 for EOR in the nearby Hilcorp owned West Ranch oil field, where oil extraction is to be increased from 500 to 15,000 barrels per day. In news interviews, CEO of partner company JX “insisted” that some of the Co2 would be permanently sequestered and thus the project “does tackle climate change to some extent.”

The $1.3 billion dollar SaskPower Boundary Dam Power Station CCS project recently started operation – the first post combustion coal plant fitted with CCS. The project is proclaimed as “making a viable technical, economic and environmental case for the continued use of coal.” Further they claim to provide a “90% greenhouse gas reduction…the equivalent of taking more than 250,000 cars off the road annually.”  And yet the facility will sell the majority of captured CO2 to Cenovus for EOR. Emissions from the additional oil extraction are invisible in the hype surrounding the facility opening.

The notorious “FutureGen” CCS project in Illinois was initially funded in 2003 under the Bush administration, then cancelled due to high costs and a legal challenge. It was recently granted a new lease on life with $1 billion in DOE funding yet still remains far from operational.

In Kemper County Mississippi, a coal CCS project  was initially projected to cost 2.4 billion and to date estimates have risen to 5.4 billion and rising. Again, the captured CO2 is to be used for EOR at nearby Denbury Resources owned wells. According to a recent Wall Street Journal report: “The only thing the Kemper power plant is burning now is money. The plant has suffered almost every kind of cost overrun, beset by bad weather, labor costs, shortages and “inconsistent” quality of equipment and materials, and contractor and supplier delays.”

The AEP owned Mountaineer Plant, a coal burning facility in West Virginia was put on hold due to excessive costs.

And, the contentious Duke Energy coal gasification facility in Edwardsport Indiana was reportedly using more energy than it produced even after massive cost overuns and ratepayer outrage. THe Sierra Club refers to this project as “A monument to cost overuns, concealment and malfeasance.”

Capturing CO2 streams from natural gas extraction processes has been demonstrated (Sleipner and elsewhere) But even that has been frought with difficulties.  A much touted plan to capture CO2 from the Mongstad facility in Norway was recently abandoned after monumental cost overuns.

The largest bioenergy project with CCS by far involves a corn ethanol refinery owned by Archer Daniels Midland, in Decatur, Ill. This project aims to store captured CO2 in nearby Mount Simon saline aquifer. The estimated costs are 207 billion and has required construction of a separate power plant to provide energy for capture, dehydration and compression of the CO2.

In reality, CCS is the oil and coal industry’s dream technology.

Just as the myth that burning biomass is “carbon neutral” has been relentlessly perpetrated, now another myth has emerged.  This myth refers to CCS as a means of sequestering carbon – removing it from the atmosphere and fixing the problem of climate change.  Yet in reality CCS is the oil and coal industry’s dream technology! Through a tangled web of misinformation and rhetoric they have convinced many that we should build more fossil and bioenergy industrial facilities, which will need even greater capacity to power carbon capture, which will then facilitate extraction of yet more oil.  This is sold to us as a “solution” to the climate crisis and in the case of bioenergy applications, as “climate geoengineering”.

While a remarkeable number of people, including IPCC scientists and even some environmentalists even appear easily fooled, the atmosphere and earth systems certainly will not be!

 

Smolker_Rachel_HeadshotDr. Rachel Smolker is a codirector of Biofuelwatch, and an organizer with Energy Justice Network. She has researched, written and organized on the impacts of biofuels, bioenergy and biochar on land use, forests, biodiversity, food, people and the climate. She works with various coalitions, national and international including the Mobilization for Climate Justice, Climate Justice Now and others opposing market-based solutions to climate change and other “false solutions”. She is the daughter of one of the founders of Environmental Defense Fund and participated in a protest against that organization because of the key role EDF played in advocating market based solutions to climate change. She has a Ph.D. in ecology/biology from the University of Michigan and worked previously as a field biologist, gaining first hand experience with the complex balance between the needs of people and the ecological systems they depend upon. She is author of “To Touch A Wild Dolphin” (Doubleday 2001) and lives in Vermont. A list of publications is available on request.

 

[1] But note burning wood emits vastly greater quantities of many other pollutants including particulates, VOCs, NOx and CO. see: http://www.pfpi.net/trees-trash-and-toxics-how-biomass-energy-has-become-the-new-coal

[2] see also: http://www.rspb.org.uk/Images/biomass_report_tcm9-326672.pdf

and http://onlinelibrary.wiley.com/doi/10.1111/j.1757-1707.2012.01169.x/abstract

and http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3617913/

[3]  Smith, L.J. and Torn. M.S.  2013.  Ecological Limits to terrestrial biological carbon dioxide removal.  Climate Change vol. 118 (1): 89-103 

[4] Note: there are other approaches to EOR that do not involve CO2, such as injection of gas, water and other substances.

[5] Carbon Dioxide Enhanced Oil Recovery Untapped Domestic Energy Supply and Long Term Carbon Storage Solution, National Energy Technology Laboratory, U.S. Department of Energy, March 2010.

[6] CO2 enhanced Oil Recovery.  Institute for 21st Century Energy and US Chamber of Commerce

[7] U.S. Oil Production Potential From Accelerated Deployment of Carbon Capture and Storage, Advanced Resources International, prepared for the Natural Resource Defense Council, March 2010.

[8] NOTE: CO2 enhanced oil recovery is not the only approach to EOR, though it is the most common and so far most established.

Bioenergy CCS and Potential Tradeoffs with Food Production

Author: Wil Burns

As the Intergovernmental Panel on Climate Change concluded in its Fifth Assessment Report’s Working Group III contribution, “[b]ioenergy coupled CCS (BECCS) has attracted particular attention since AR4 because it offers the prospect of energy supply with negative emissions.” However, as the IPCC report also cautions, BECCS poses serious challenges, among them, the potential threat to food supplies posed by diversion of biomass to energy production. study, “Global bioenergy potentials from agricultural land in 2050: Sensitivity to climate change, diets and yields,” published a few years ago in the journal Biomass & Bioenergy (subscription required) provides an excellent overview of the potential interrelations between food and energy production, and the potential for projected climatic change to either ameliorate or exacerbate the tensions between food and energy production. The study employed what it termed a “socioeconomic metabolism approach” to formulate a biomass balance model (to 2050) to link supply and demand of agricultural biomass, excluding forestry.

Among the conclusions of the study:

    1. Climate change could have dramatic impacts on available biomass in 2050. If some projections of the CO2 fertilization effects are correct, bioenergy potential could rise by a whopping 45% to 151.7 EJ y-1, or it could decline to 87.5 EJ if CO2 fertilization is completely ineffective.  To put this in context, humans currently harvest and utilize a total of amount of biomass with an energy value of 205 EJ y-1. “This implies that the global bioenergy potential on cropland and grazing areas is highly dependent on the (uncertain) effect of climate change on future global yields on agricultural areas.”
    2. However, part of the potential benefits of the CO2 fertilization effect could be obviated by potential decreases in protein content and higher susceptibility to insect pests
    3. There is huge uncertainty in potential bioenergy from forests, ranging from zero to 71 EJ y-1 in 2050;
    4. After taking into account projected food needs, primary bioenergy potential is estimated to be between 64-161 EJ y-1 However, this is “only a fraction of current fossil-fuel use.” Moreover, realizing bioenergy potentials on grazing lands of this magnitude would require “massive investments” in agricultural technologies, e.g. irrigation and could also particularly threaten populations practicing low-input agriculture.

This study demonstrates that BECCs remains a highly contested proposition in terms of potential tradeoffs of food and energy production. Moreover, the “wildcard” of the potential impacts of climate change on biomass production are likely to remain unknown for many decades, making it difficult to determine if large-scale BECCS should be pursued as a policy option.

Related reading

 

WilBurnsBioThumbWil Burns is Director, MS in Energy Policy and Climate Program, Johns Hopkins University & co-founder of the Washington Geoengineering Consortium.