ICRLP Co-Director Dr. Wil Burns Explores Ocean Alkalinization’s Potential

ICRLP Co-director Wil Burns and co-author Charles R. Corbett recently published an important article in One Earth titled “Antacids for the Sea? Artificial Ocean Alkalinization and Climate Change.” This important article explores ways in which artificial ocean alkalinization (AOA) could serve as an important component of a large-scale carbon removal strategy. It includes an analysis of the risks and benefits of AOA, as well as governance considerations. 

Despite the world community coming together in 2015 and signing the Paris agreement, it has since become clear that the reality of meeting the 2.0/1.5°C temperature targets are becoming increasingly unrealistic, as countries continue to lag on meeting even the already lackluster pledges they have made. Furthermore, 87% of the scenarios run in the IPCC Fifth Assessment Report that meets the Paris Agreements targets incorporate large-scale adoption of carbon dioxide removal strategies.

Thus far, the majority of the focus on carbon dioxide removal (CDR) has been on terrestrially based technologies such as bioenergy and carbon capture (BECCS), afforestation and reforestation, and direct air capture. Although these are all methods deserving of consideration and assessment, there are also many associated shortfalls and risks, providing a compelling rationale for assessing the potential role of ocean-based carbon removal approaches. 

Ocean-based approaches to CDR are under-developed, under-funded, and under-tested. This is despite the fact that the ocean comprises 71% of Earth’s surface and is already passively absorbing 10 gigatons of carbon every year, with the great potential to store more. In light of the climate crisis, this potential is something the global community cannot afford to overlook.

Thus far, most of the ocean-based CDR has focused on ocean iron fertilization (OIF). However, recent research has concluded that OIF’s sequestration potential may be low, and it could pose serious risks to ocean ecosystems. As a consequence, it has largely been abandoned as the most viable ocean-based CDR method.  

 However, despite the shortcomings of OIF, the method does provide some incentive to look into other ocean-based methods of CDR. AOA may provide some of the greatest potentials in that regard. 

AOA is the method of adding alkalinity to ocean systems, increasing pH levels, which in turn leads to greater carbon absorption and a reduction in acidification. AOA has the potential to represent meaningful contributions to the battle against climate change and carbon sequestration, even at the low end of its potential. Several methods have been proposed:

  • Addition of powdered olivine (highly reactive lime)
  • Addition of calcium hydroxide, produced by the calcination of limestone, applied to ocean surfaces or into deep currents that end in upwelling regions
  • Utilization of local marine energy sources to manufacture alkalinity
  • Combining waste CO2 with minerals for reaction, which result in dissolved alkaline material, and pumping it into the ocean

AOA also has the added benefit of potentially combating another detrimental side effect of climate change: ocean acidification. Acidification of the ocean:

  • Reduces levels of carbonate, compromising the formation of calcium carbonate shells among coral, bivalve, and crustaceans
  • Harms finfish species, which has a detrimental impact on habitat, food source and larval survival

Ocean Acidification has increased 30% since the beginning stages of our current anthropogenic CO2 emissions, and pH levels are the lowest they have been in 2 million years.

However, AOA is not without its own potential risks, including:

  • Inhibiting photosynthesis in phytoplankton communities;
  • Threatening species that may not be able to easily adjust to increasing levels of alkalinity;
  • Introducing new and heavy toxic materials to ocean ecosystems

When facing both the uncertainties and the potential benefits of AOA deployment, good governance is critical. It enables the facilitation of research by providing clear guidelines and assessment protocols. Additionally, it identifies risks, creates rules and guidelines, and enforces them. Lastly. it provides the research legitimacy by establishing responsibility and helping to build societal support.

The provision of guidelines and structure around the international laws pertaining to oceans is also another important component of AOA implementation. Coastal countries have sovereignty over bodies of water within 12 nautical miles of their shore, and AOA would need to comply with the national permitting process of each nation. When the practice expands into a country’s exclusive economic zone (EEZ), which is the area about 200 nautical miles from the coast, things begin to get more complicated. However, the coastal country still has the authority to regulate activities that affect the marine ecosystem, so research protocols should remain similar to those being conducted in the waters just beyond the territory. Beyond the EEZ, AOA research would be permitted, but subject to principles of state responsibility should harm occur to the interests of other States under the UN Convention on the Law of the Sea. Moreover, principles of the Biodiversity Beyond National Jurisdiction, an agreement being developed under the Convention on the Law of the Sea, could be apposite, including the requirement that the parties establish conservation areas and environmental assessments pertaining to the marine biological diversity of areas beyond their national jurisdiction.

In order to ensure that a standard of compliance with acceptable environmental standards is set, looking at this matter with regard to OIF is a good starting point. In 2013 the London Protocol passed an amendment prohibiting ocean iron fertilization scientific research without a national permit and engagement in a stringent risk-assessment procedure.

Despite its potential AOA still comes with uncertainty around potential risks, questions about who has control over deployment decisions, and who bears the burden of liability. Local AOA treatments could serve as a good starting point for a gradual understanding of its impacts, and a means to allow government structures to mature alongside advances in technical understanding.

ICRLP Webinar Explainer Series Provides A Deeper Understanding on Many Issues Surrounding Carbon Dioxide Removal

One of the streams of work for The Institute for Carbon Removal Law and Policy is to provide broad education on carbon removal approaches and implications. Carbon removal is a big and complex subject matter, with much to unpack and debate. With this in mind, we launched our “Assessing Carbon Removal Webinar Explainer Series” in 2018. 

These one-hour webinars bring together Institute staff and guest speakers to explain what is known about varying carbon removal approaches and to explore big themes. The presentations and conversations delve into research needed to assess technical, legal, and social aspects and considerations of carbon removal technologies.,

Most recently presented in this series have been webinars on Agroforestry and Carbon Removal and Corporate Commitments, both of which have accompanying blog entries that outline the main points covered in the presentations, which can be found on ICRLP Carbon Removal Blog Posts page.

In addition to these recent webinars, there are a number of past presentations that provide a wealth of knowledge on carbon removal:

  • Enhanced Oil Recovery: A discussion on the technological, economic, and political issues associated with Enhanced Oil Recovery (EOR), including the costs involved, the project development perspective, EOR relative to saline storage necessary to scale up carbon storage, and why EOR should be decoupled from the decarbonatization agenda and policy.
  • Mitigation Deterrence: Mitigation Deterrence (MD) is where the pursuit of greenhouse gas removal (GGR) delays or deters other mitigation options. This webinar presents the results of a project that analyzes this issue and explores conditions in which GGR technologies can be used with minimal MD.
  • Direct Air Capture: The presentations within this webinar provide a comprehensive overview of mechanisms behind Direct Air Capture of carbon dioxide, which is the practice of utilizing chemicals to remove carbon dioxide from the air. 
  • Enhanced Mineral Weathering: This webinar presents the ins and outs behind varying proposed methods of Enhanced Mineral Weathering utilizing an array of minerals on land and in the oceans. 
  • Governance of Marine Geoengineering: This webinar followed the release of a CIGI Special Report on this topic. The presentations dig into the potential role of marine climate geoengineering approaches such as ocean alkalization and “blue carbon,” with a focus on the governance, research, deployment and potential risks associated with these approaches to carbon dioxide removal.
  • Communicating Carbon Removal: This webinar was presented following the release of ICRLP report “The Carbon Removal Debate” and explores the challenges associated with communicating the necessity for, and options behind, carbon dioxide removal.
  • The Brazilian Amazon Fires: What Do They Mean for the Climate?: As thousands of fires ripped across the Amazon in 2019, wreaking havoc and devastation, this webinar seeks to explore what these fires mean for the climate, and lessons are to be learned regarding global forest protection.
  • Soil-Based Carbon Removal: Soil harbors three times more carbon than is present in the atmosphere, and this webinar investigates whether healthy soils can help tackle climate change. Experts on the panel provide a scientific overview of soil carbon sequestration while examining the risks, benefits, and uncertainties.  
  • NAS “Negative Emissions Technologies and Reliable Sequestration: A Research Agenda” Report: This report released by the National Academy of Sciences, Engineering, and Medicine is the focus of discussion in this webinar. A few of the points addressed are the current state and potential for negative emissions technologies, conceptualizing scale in addressing climate change, and the impact of carbon removal on land use and soil, among others.
  • Potential Role of Carbon Removal in the IPCC’s 1.5 Degree Special Report: The panelists in this webinar examine this special report, released by the IPCC in 2018, examine what this report says about many aspects of carbon removal such as the potential need, governance, and classification. 
  • What We Know and Don’t Know about Negative Emissions: This webinar is aimed at providing a systematic overview of negative emissions technologies, discussing the status of research, ethical considerations, and how to spur future innovation and upscale research for advancing utilizations.
  • Accessing Carbon Dioxide Removal: As the introductory webinar that kicked off the series in 2018, the panelists dive into what carbon removal technologies are, their role in the portfolio of response to climate change, risks, ways to manage technologies in beneficial ways, and what the future could potentially hold. This webinar in particular serves as a valuable springboard for those who are relatively unfamiliar with carbon removal and seeking to learn more. 

All of these webinars are also available to view on our YouTube channel and on the ICRLP website. As this series continues to evolve, we encourage you to stay tuned for upcoming webinars going forward. If you are interested in joining our mailing list to receive notifications of upcoming webinars and our Newsletter, feel free to reach out to us at icrlp@american.edu.

ICR Fact Sheets Provide a Comprehensive Overview of All Things Carbon Removal

Although the emerging field of carbon removal has great potential to help curb climate change when coupled with more traditional methods of mitigation, it is riddled with uncertainty. There are many risk factors and many components within each individual method that are still poorly misunderstood. The Institute for Carbon Removal Law and Policy is dedicated to creating a set of comprehensive tools that can aid in providing clarity on carbon removal practices and technologies on many different levels.

Among these valuable resources are a comprehensive set of Fact Sheets that provide overviews on each of the individual topics regarding carbon removal, the production of which was provided for by a grant from The New York Community Trust. These fact sheets are broken down into two categories, topics in carbon removal and approaches to carbon removal. 

The topics in carbon removal fact sheets provide an overview and background on:

What is carbon removal?

Nature-based solutions to climate change and 

Carbon capture & use and carbon removal

The approaches to carbon removal fact sheets break down the ten different topics, providing a deeper context to the potential methods behind carbon removal. Each of these provides not only an overview but weigh in on the co-benefits & concerns, potential scales and costs, technological readiness, governance consideration, and provide sources for further readings. These methods include:

Agroforestry: Incorporates trees with other agricultural land use which not only removes carbon dioxide but also provides benefits to farmers and their communities.

Bioenergy with carbon capture and storage: A technique dependent on two technologies. Biomass that is converted into heat, electricity, liquid gas, or fuels make up the bioenergy component. The carbon emissions generated from this bioenergy conversion are then captured and stored in geological formations or long-lasting products, this being the second component of this method.

Biochar: A type of charcoal that is produced by burning organic material in a low oxygen environment, converting the carbon within to a form that resists decay. It is then buried or added to soils where that carbon can remain harbored for decades to centuries.

Blue Carbon: Refers to the carbon that is sequestered in peatlands and coastal wetlands such as mangroves, tidal marshes and seagrass among others, many of which have been destroyed in recent decades. 

Direct Air Capture: An approach that employs mechanical systems that capture carbon directly and compress it to be injected into geological storage, or used to make long-lasting products.

Enhanced Mineralization: Also known as enhanced or accelerated weathering. Accelerates the natural processes in which various minerals absorb carbon dioxide from the atmosphere. One implementation involves grinding basalt into powder and spreading it over soils, causing a reaction with CO2 in the air, forming stable carbonate materials.

Forestation: This includes forest restoration, reforestation and afforestation. Forests remove carbon dioxide and through the trees within, and have the potential to store that carbon for long periods of time.

Mass Timber: A method that involves utilizing specialized wood products to construct buildings, therefore replacing emission-intensive material such as concrete and steel. Further, this wood stores carbon that was captured from the atmosphere through photosynthesis. 

Ocean Alkalization: A process involving adding alkaline substances, such as olivine or lime, to the seawater to enhance the ocean’s natural carbon sink.

Soil Carbon Sequestration: Also referred to as “carbon farming” or “regenerative agriculture.” This process involves managing land in ways that promote carbon absorption and sequestration within soils, especially prominent among farmland.

By reviewing each of these succinctly written fact sheets, it is possible for one to gain a solid understanding of what is happening in the world of carbon removal; the good, the bad, and the misunderstood.